

Six Challenges on the Dimension of Harmonic Measure

In \mathbb{R}^3 : $\overline{\dim}_H \omega_\Omega \leq 2.99999 \cancel{9999999999}$

In \mathbb{R}^n : $\overline{\dim}_H \omega_\Omega \leq n - 10^{-2n \log(n)}$

Matthew Badger

University of Connecticut

Michael Albert
(UConn)

Alyssa Genschaw
(Milwaukee School of
Engineering)

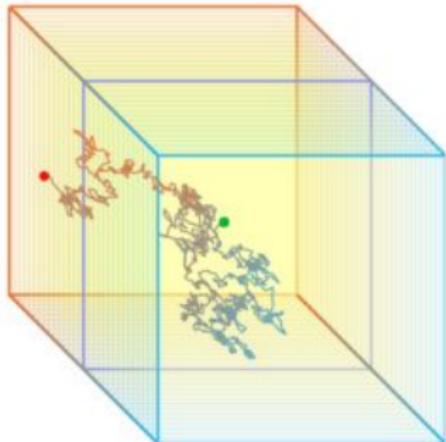
JMM 2026, Washington, D.C., Harmonic Analysis and Elliptic PDE

Research Partially Supported by NSF DMS 2154047

Disclaimer!

I will restrict my discussion to classical harmonic measure. There are of course many interesting relatives to investigate

elliptic measures, p -harmonic measures, caloric measure, parabolic measures, harmonic measures in higher co-dimensions, Robin harmonic measures, ...



Let $\Omega \subset \mathbb{R}^n$ be bounded, open, connected. A set $L \subset \partial\Omega$ is a **landing set for Brownian motion** if a.e. random curve drawn starting in Ω first hits the boundary of the domain in L

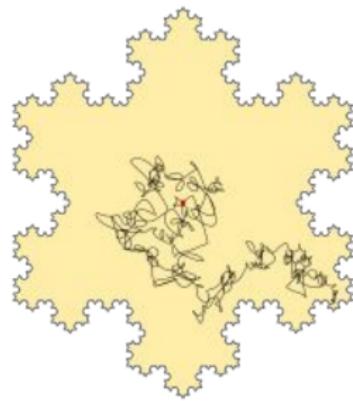
E.g. If $\Omega = (0, 1)^3$ and L is the union of the 6 *open faces* of the cube (exclude the edges), then L is a landing set for Brownian motion

The **Hausdorff dimension of harmonic measure on Ω** is the smallest Hausdorff dimension of a landing set for Brownian motion in Ω

The **Hausdorff dimension of harmonic measure on \mathbb{R}^n** is the largest Hausdorff dimension of harmonic measure on Ω across all domains:

$$d_n = \sup_{\Omega} \overline{\dim}_H \omega_{\Omega}, \quad d_n \geq n - 1 \text{ (e.g. take } \Omega = (0, 1)^n\text{)}$$

Harmonic measure on the Koch snowflake domain



Lemma

$$\dim_H \partial\Omega = \log_3(4) = 1.26185\dots$$

Theorem (Kaufman and Wu 1985)

On the snowflake domain, there is a landing set $L \subset \partial\Omega$ with $\dim_H L < \dim_H \partial\Omega$

We call this phenomena **dimension drop**

Theorem (Carleson 1985)

On the snowflake domain, there is a landing set of $L \subset \partial\Omega$ with $\dim_H L = 1$

Theorem (Makarov 1985)

On any simply connected planar domain, there is a landing set $L \subset \Omega$ with $\dim_H L = 1$. Moreover, $\omega_\Omega(E) = 0$ for any set with $\dim_H E < 1$.

The Hausdorff dimension of harmonic measure on a simply connected domain $\overline{\dim}_H \omega_\Omega = 1$

Dimension of Harmonic Measure in \mathbb{R}^n

$$d_n = \sup_{\Omega} \overline{\dim}_H \omega_{\Omega}, \quad d_n \geq n - 1 \quad (\text{e.g. take } \Omega = (0, 1)^n)$$

If $\Omega \subset \mathbb{R}^n$ and $k \geq 1$, then $\overline{\dim}_H \omega_{\Omega \times \mathbb{R}^k} = \overline{\dim}_H \omega_{\Omega} + k$. Hence

$$d_{n+k} \geq d_n + k \quad \text{for all } n \text{ and } k$$

Theorem (Jones and Wolff 1988)

For any $\Omega \subset \mathbb{R}^2$, there is a landing set $L \subset \partial\Omega$ with $\dim_H L \leq 1$. Thus, $d_2 = 1$.

Theorem (Wolff 1995)

There is a simply connected NTA domain Ω in \mathbb{R}^3 such that $\overline{\dim}_H \omega_{\Omega} > 2$. Thus, $d_n > n - 1$ for all $n \geq 3$. (This doesn't say how much greater than $n - 1$)

Theorem (Bourgain 1987)

For all $n \geq 3$, there is a constant $b_n > 0$ such that $d_n = n - b_n < n$.
(This doesn't say how much less than n)

What is the Hausdorff dimension of harmonic measure in \mathbb{R}^n ?

We don't know! This question is open!

Conjecture (Bishop 1992)

The Hausdorff dimension of harmonic measure in \mathbb{R}^3 is 2.5.

More generally, the dimension of harmonic measure in \mathbb{R}^n is $n - \frac{1}{n-1}$.

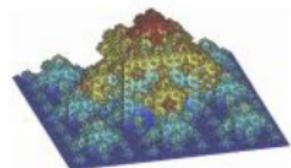
- ▶ Today I'll announce new bounds on the dimension of harmonic measure in \mathbb{R}^n that are joint with Michael Albert and Alyssa Genschaw
- ▶ I'll present several challenges that could be stepping stones towards proving or disproving Bishop's conjecture
- ▶ We need more people to get involved!

Lower Bound Challenges

Numerical Experiment (Grebekov et al. 2005)

The Hausdorff dimension of harmonic measure in \mathbb{R}^3 is ≥ 2.005

- ▶ This estimate is made by simulating Brownian motion on the fifth iteration of a cubical Koch snowflake surface.
- ▶ This bound is not yet mathematically verified.



Challenge 0

Repeat the numerical experiment using the same or different methodology to confirm or refute the 2.005 bound. Apply the method to estimate the dimension on different domains.

Challenge 1

Prove that the dimension of harmonic measure of some domain $\Omega \subset \mathbb{R}^3$ is $> 2 + \varepsilon$ for some explicit number $\varepsilon > 0$.

What is the dimension of harmonic measure in \mathbb{R}^3 ?

Theorem (Badger and Genschaw 2024)

The dimension of harmonic measure in \mathbb{R}^3 is $< 2.99999\ 99999\ 99999$

The dimension of harmonic measure in \mathbb{R}^n is $< n - 10^{-n^2 \log(n)}$ provided that $n \gg 3$ ("n is much greater than 3")

- ▶ The bound in \mathbb{R}^3 is established by tracking through all estimates in Bourgain's proof and optimizing discrete parameters

Theorem (Albert-Badger-Genschaw 2026+)

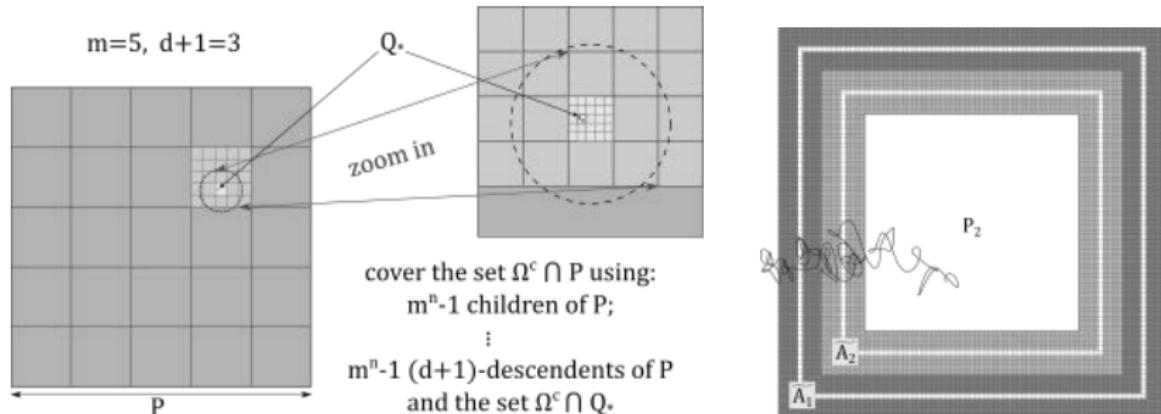
The dimension of harmonic measure in \mathbb{R}^3 is $< 2.99999\ 9$

The dimension of harmonic measure in \mathbb{R}^n is $< n - 10^{-2n \log(n)}$ for all (!!) $n \geq 3$

- ▶ We employ several new strategies for estimating **non-additive** s -dimensional Hausdorff contents in \mathbb{R}^n when $s < n$.

$$d_3 < 2.99999\ 99999\ 99999, \quad d_n < n - 10^{-n^2 \log(n)}$$

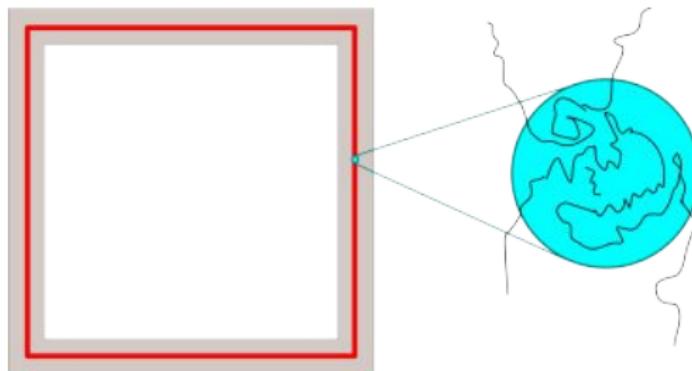
Idea: Introduce a model of Bourgain's alternative in which we are able to rigorously compute admissible pairs of certain constants λ and ρ for which you can show $\dim_H \omega_\Omega \leq n - \lambda\rho/(\lambda + \rho)$.



We then optimize over several discrete parameters in the the model to find the best possible bound for the dimension of harmonic measure in \mathbb{R}^3 . In **Bourgain** and **Badger-Genschaw**, the model relies on using a fixed grid of m -adic cubes with m large depending on $n = 3$.

$$d_3 < 2.99999 \cancel{9999999999}, \quad d_n < n - 10^{-2n \log(n)}$$

1. Redo Bourgain's analysis using **pairwise disjoint cubes in general position** instead of cubes in a fixed m -adic grid
2. We develop a new estimate for a **One-Ring Bourgain Alternative**: the presence of one sufficiently thin ring with lots of boundary on the outside of a cube makes it unlikely that Brownian motion will enter the inside of the cube before exiting the domain.



3. To get $d_n < n - 10^{-Cn \log(n)}$ (instead of $d_n < 10^{-Cn^2}$) it turns out that we need to use **round snapshots** instead of cubical snapshots

One-Decimal Challenge

Bishop's Conjecture: The Hausdorff dimension of harmonic measure in \mathbb{R}^3 is 2.5

Current Bounds: $2.005 < d_3 < 2.999999$

Challenge 2

For trivial reasons, $d_3 > 2.1$ or $d_3 < 2.9$, but we don't know the truth of either bound. Prove one of these (or both)!

Exponential Challenge

Bishop's Conjecture: The Hausdorff dimension of harmonic measure in \mathbb{R}^n is $n - \frac{1}{n-1} = n - 10^{-\log_{10}(n-1)}$

Current Upper Bound: $d_n < n - 10^{-2n\log(n)}$ for all $n \geq 3$

Challenge 3

Prove that $b_n \geq 10^{-Cn}$ for all $n \geq n_0$ for some constants C and n_0 or prove any sub-exponential lower bound on b_n when n is large.

- ▶ In my opinion, it is unlikely that Challenge 3 can be resolved using a variant of Bourgain's method.

Decreasing Co-Dimension Challenge

Bourgain's constant $b_n = n - d_n$ is the amount of dimension drop in Bourgain's theorem

Bishop's Conjecture: The Hausdorff dimension of harmonic measure in \mathbb{R}^n is $n - \frac{1}{n-1}$, i.e. $b_n = \frac{1}{n-1}$

Folklore Challenge: $\lim_{n \rightarrow \infty} b_n = 0$

- ▶ This challenge is intractable, because we don't have candidates for the extremal domains realizing d_n
- ▶ Here is a better challenge that we should work on first:

Challenge 4

Construct a sequence of domains Ω^n for all $n \geq 3$ such that the associated codimensions $b_{\Omega^n} := n - \overline{\dim}_H \omega_{\Omega^n}$ satisfy $1 > b_{\Omega^n} > b_{\Omega^{n+1}}$ for all $n \geq 3$. (I don't know how to find examples with $b_{\Omega^3} > b_{\Omega^4}$)

Cubical Snowflakes Don't Have Large Dimension

In their numerical experiment, Grebenkov et al. estimated dimension of harmonic measure on a domain G_3 that is formed by repeatedly attaching cubes to the middle third of each square face of the previous stage.

Let G_n be the analogous domain in \mathbb{R}^n . At each step, each face is replaced by $3^{n-1} + 2n - 1$ faces of relative size one-third:

$$\overline{\dim}_H \omega_{G_n} \leq \dim_H \partial G_n = \log_3(3^{n-1} + 2n - 1) \rightarrow n - 1 \quad \text{as } n \rightarrow \infty$$

- ▶ This means that the domains G_n cannot be used to solve Challenge #4
- ▶ There is no reason to believe that $\overline{\dim}_H G_n$ is close to d_3 :
 G_3 does not "expand" in every possible direction in \mathbb{R}^3

Packing Dimension Challenges

Packing dimension is a countably stable version of the Minkowski dimension.

For any set $\dim_H E \leq \dim_P E$

Challenge 5a

Prove or disprove: for all $n \geq 2$, there exists a constant $p_n \in (0, b_n]$ such that the packing dimension of harmonic measure on any domain is at most $n - p_n$.

- ▶ Bourgain's method cannot settle this conjecture, because of its reliance on Frostman's lemma.

Challenge 5b

Prove or disprove: the packing dimension of harmonic measure on any simply connected planar domain is 1.

- ▶ On the Koch snowflake domain, the harmonic measure lives on a set of \mathcal{H}^1 measure zero (McMillan's Twist Point Theorem)
- ▶ On the Koch snowflake domain, the harmonic measure vanishes on any set of σ -finite \mathcal{P}^1 measure (Choi 2004)

Maximal Dimension Drop Challenge

Define the **maximal dimension drop constant**:

$$m_n = \sup_{\Omega} \dim_H \partial\Omega - \overline{\dim}_H \omega_{\Omega}$$

There are domains with $\dim_H \partial\Omega = n$, so Bourgain's theorem implies

$$m_n \geq b_n$$

Challenge 6

Is $m_n = b_n$ or is $m_n > b_n$? In particular, looking at the case $n = 2$:

Is $m_2 = 1$ or is $m_2 > 1$? If $m_2 > 1$, then what is m_2 ?

- ▶ A related theorem about minimal dimension drop:
- ▶ **David-Jeznach-Julia (2023):** for all $\varepsilon > 0$, there exists a topological Cantor set $C \subset \mathbb{R}^2$ such that the exterior domains $\Omega = \mathbb{R}^2 \setminus C$ satisfy $\overline{\dim}_H \omega_{\Omega} = \dim_H \partial\Omega = \dim_H C < \varepsilon$.

Questions?

Thanks For Your
Attention